Views: 0 Author: Site Editor Publish Time: 2025-09-15 Origin: Site
A 2025 OEM Buyer’s Guide
Description
Side-by-side comparison of 12V 200 Ah lead-acid and 12.8V lithium (LiFePO₄) storage batteries: price, weight, cycle life, temperature, safety and total cost of ownership. Includes sizing tips for solar/UPS.
--------------------------------------------------
1. Specification Shoot-out (12 V 200 Ah class)
--------------------------------------------------
| Feature | Sealed Lead-Acid (AGM/Gel) | LiFePO₄ Lithium |
| Nominal capacity | 200 Ah (C/10) | 200 Ah (C/1–C/10) |
| Energy (Wh) | ≈2 400 Wh | ≈2 400 Wh |
| Weight | 55–60 kg | 15~16 kg |
| Volume | ~522*239*218 mm | ~520*237*221 mm (–10 %) |
| Cycle life @ 80 % DoD | 400–600 cycles | 1 000–15 00 cycles |
| Calendar life | 5–6 yrs (25 °C) | 10–12 yrs (25 °C) |
| Charge time (0–100 %) | 10–12 h (0.2 C) | 2–3 h (1 C) |
| Charge efficiency | 80–85 % | 95–98 % |
| Operating temp. | –20 °C to +50 °C* | –20 °C to +60 °C |
| Depth of discharge | 50 % recommended | 80–100 % usable |
| Maintenance | Occasional equalisation | Zero |
| Safety | Hydrogen vent, acid spill | Built-in BMS, no gas |
| Up-front cost (2025, OEM) | USD 140 | USD 240 |
| Cost per kWh per cycle | ~USD 0.4 | ~USD 0.09 |
*Capacity drops ~30 % at –20 °C for lead-acid; LiFePO₄ retains >90 %.
Data compiled from .
--------------------------------------------------
2. Where Lead-Acid Still Wins
--------------------------------------------------
- **Low purchase price** – Best for capex-sensitive, low-cycle apps (emergency lighting, starter packs).
- **Simple recycling** – Mature worldwide scrap network; >95 % lead recovery.
- **High surge current** – AGM types deliver 10–15 C for milliseconds; lithium needs BMS limit.
- **Wide supplier base** – Available in most regions without MOQ.
--------------------------------------------------
3. Where Lithium Dominates
--------------------------------------------------
- **Daily cycling** – Solar self-consumption, telecom towers, RV house banks: pay-back 2–4 years.
- **Weight-critical** – Marine, camping, EV conversions: 3× lighter = lower fuel/space penalty.
- **Partial-state cycling** – LiFePO₄ tolerates 20–80 % swings without sulphation, unlike lead.
- **Fast recharge** – Accepts 1 C charge; finish lunch break with full battery.
--------------------------------------------------
4. Solar-sizing Example (48 V system, 10 kWh usable)
--------------------------------------------------
**Lead-acid route**
- 50 % DoD → 20 kWh gross → 8 × 12 V 200 Ah in parallel-series (16 units)
- Weight: 900~970 kg; Volume: 0.44 m²
- Replacement: 3~5 yrs
**Lithium route**
- 90 % DoD → 11 kWh gross → 4 × 12 V 200 Ah LiFePO₄ (8 units)
- Weight: ~128 kg; Volume 0.22 m²
- Replacement: >6 yrs
10-year TCO (battery only, 2025 prices)
Lead-acid: 8 × USD 140 × 2 replacements = USD2 240
Lithium: 8 × USD 230 × 1 replacement = USD 1 840
Net saving ≈ USD400 + lower install cost + no maintenance visits.
--------------------------------------------------
5. Safety & Environmental Notes
--------------------------------------------------
**Lead-acid**: Vent hydrogen; use acid-proof tray; recycle via certified smelter.
**Lithium**: Integrated BMS protects over-voltage, under-voltage, temp; still ship as Class 9; recycle through Li-ion channel .
--------------------------------------------------
6. Decision Matrix (quick reference)
--------------------------------------------------
- ≤200 cycles, low budget, weight unimportant → Lead-acid
- 500–1 000 cycles, weight/space critical, fast charge → LiFePO₄
- Remote site, no maintenance access → LiFePO₄
- High-surge starter duty → AGM lead-acid (or hybrid: AGM + LiFePO₄ logic)
--------------------------------------------------
7. Key Take-away
--------------------------------------------------
For 12 V energy-storage applications cycled <150×/yr, lead-acid remains the cost king. Once daily cycling, partial-state operation, or weight constraints enter the equation, LiFePO₄’s 4-6× longer life, 3× lighter mass and 95 % charge efficiency offset its higher purchase price, delivering a lower total cost of ownership within 2–4 years .
Quote your next project with both chemistries; let the duty-cycle maths decide.